
 

1.1.QSAR identifier (title):

LogP: Octanol-water partition

   coefficient prediction from the

   NCCT_Models Suite.

1.2.Other related models:

No related models

1.3.Software coding the model:

NCCT_models V1.02

Suite of QSAR models to predict physicochemical properties and environmental fate of organic

chemicals

Kamel Mansouri (mansouri.kamel@epa.gov; mansourikamel@gmail.com);

https://comptox.epa.gov/dashboard/

 

 

PaDEL descriptors V2.21

Open source software to calculate molecular descriptors and fingerprints.

Chun Wei Yap (phayapc@nus.edu.sg)

http://padel.nus.edu.sg/software/padeldescriptor

 

 

MATLAB

MATrix LABoratory is a multi-paradigm numerical computing environment and fourth-generation

programming language

http://www.mathworks.com/company/aboutus/contact_us/?s_tid=gn_cntus

http://www.mathworks.com/products/matlab/

 

2.1.Date of QMRF:

18 April 2016

2.2.QMRF author(s) and contact details:

[1]Kamel Mansouri, ORISE research fellow at National Center for Computational Toxicology

(NCCT), U.S. Environmental Protection Agency, mansouri.kamel@epa.gov;

mansourikamel@gmail.com

[2]Antony Williams, National Center for Computational Toxicology (NCCT), U.S. Environmental

Protection Agency, Williams.Antony@epa.gov 

2.3.Date of QMRF update(s):

2.4.QMRF update(s):

2.5.Model developer(s) and contact details:

Kamel Mansouri, ORISE research fellow at National Center for Computational Toxicology (NCCT),

U.S. Environmental Protection Agency, mansouri.kamel@epa.gov; mansourikamel@gmail.com 

QMRF identifier (JRC Inventory):To be entered by JRC
QMRF Title:LogP: Octanol-water partition
    coefficient prediction from the
    NCCT_Models Suite.
Printing Date:May 4, 2016

1.QSAR identifier

2.General information



2.6.Date of model development and/or publication:

2016

2.7.Reference(s) to main scientific papers and/or software package:

[1]An Investigation of the Impact of Quality versus Quantity of data on the development of

physicochemical parameter QSAR models. Antony Williams, Kamel Mansouri, Chris Grulke and Ann

Richard

[2]Modeling physicochemical properties and environmental fate of organic chemicals. Kamel

Mansouri, Antony Williams, Chris Grulke, Ann Richard, Richard Judson

[3]PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints.

Chun Wei Yap. (2011). J. Comput. Chem., 32: 1466–1474. doi:10.1002/jcc.21707

http://onlinelibrary.wiley.com/doi/10.1002/jcc.21707/abstract

[4]A KNIME workflow for chemical structures curation and standardization in QSAR modeling. Kamel

Mansouri, Sherif Farag, Jayaram Kancherla, Regina Politi, Eugene Muratov, Denis Fourches, Ann

Richard, Richard Judson, Alexander Tropsha.

[5]Williams, A., K. Mansouri, A. Richard, AND C. Grulke. The influence of data curation on QSAR

Modeling – examining issues of quality versus quantity of data (SOT). Presented at Society of

Toxicology, New Orleans, LA, March 13 - 17, 2016.

https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=311418

[6]Richard, A., C. Grulke, K. Mansouri, R. Judson, AND A. Williams. An Online Prediction Platform to

Support the Environmental Sciences (American Chemical Society). Presented at ACS Spring

Meeting, San Diego, CA, March 13 - 17, 2016.

https://cfpub.epa.gov/si/si_public_record_Report.cfm?dirEntryId=311655 

2.8.Availability of information about the model:

Non-proprietary suite of QSAR models freely available on the NCCT

chemistry dashboard (https://comptox.epa.gov/dashboard)

and as a standalone application. Training and validation sets are

available for visualization on the dashboard and as SDF files provided

in supporting information Section 9.3 and

from the paper[ref 2, Section 2.7].

2.9.Availability of another QMRF for exactly the same model:

Not to date

 

3.1.Species:

Not applicable

3.2.Endpoint:

Physicochemical: LogP, Octanol-water partition coefficient 

3.3.Comment on endpoint:

The logarithm of the ratio of the concentrations of a solute between

   the two solvents: octanol and water. LogP value is a measure of molecular

   lipophilicity or hydrophobicity. Lipophilicity affects drug absorption,

   bioavailability, hydrophobic drug-receptor interactions, metabolism of

   molecules, toxicity as well as environmental fate of chemicals.

3.4.Endpoint units:

Unitless ratio of concentrations.

3.Defining the endpoint - OECD Principle 1



3.5.Dependent variable:

LogP

3.6.Experimental protocol:

P = Concentration in octanol phase / Concentration in aqueous phase.

   The exper imenta l  data is  downoladed f rom the EPI  Sui te data webpage (

ht tp : / /esc.syrres.com/ interkow/EpiSui teData.htm).

This data comes fromPhysProp (The Physical Properties

Database) which is a collection of a wide variety of sources built by

Syracuse Research Corporation (SRC).

3.7.Endpoint data quality and variability:

The original data collected from the PhysProp database (15809

     chemicals) has undergone a series of processes to curate the

chemical structures and remove duplicates, obvious outliers and

erroneous entries. Only good quality data with high consistency (14544

     chemicals) was used for the development of the QSAR model. 

Then, QSAR-ready structures were generated by standardizing all chemical

structures and removing inorganic and metallo-organic chemicals(14208

     chemicals). The descriptions of KNIME workflows that were developed

for the purpose of the cleaning and standardization of the data are

available in the papers[ref 1 and ref 4 Section

     2.7]. 

The curated outlier-free experimental data(14041 chemicals)was

divided into training and validation sets before the machine learning

and modeling steps.

 

4.1.Type of model:

QSAR model using PaDEL descriptors[ref2 Sect 1.3].

4.2.Explicit algorithm:

Distance weighted k-nearest neighbors (kNN)

This is a refinement of the classical k-NN classification algorithm where the contribution of each of

the k neighbors is weighted according to their distance to the query point, giving greater weight to

closer neighbors.The used distance is the Euclidean distance. kNN is an unambiguous algorithm

that fulfills the transparency requirements of OECD principle 2 with an optimal compromise between

model complexity and performance.

4.3.Descriptors in the model:

[1]CrippenLogP, Unitless, A list of atom-type based fragments weighted for their contribution to

LogP. Wildman, S. A., and Crippen, G. M. (1999). Prediction of Physicochemical Parameters by

Atomic Contributions. J Chem Inf Comput Sci 39, 868-873.

[2]GATS2c, Unitless, Geary autocorrelation - lag 2 / weighted by charges. Todeschini, R. and

Consonni, V. (2009). Molecular descriptors for chemoinformatics, (Weinheim: Wiley VCH) pg 27-37

[3]LipoaffinityIndex, Unitless, Atom type electrotopological state. Hall, L. H., and Kier, L. B. (1995).

Electrotopological state indices for atom types: A novel combination of electronic, topological, and

valence state information. J Chem Inf Comput Sci 35, 1039-1045; Liu, R., Sun, H., and So, S. S.

(2001). Development of quantitative structure-property relationship models for early ADME

evaluation in drug discovery. 2. Blood-brain barrier penetration. J Chem Inf Comput Sci 41, 1623-

4.Defining the algorithm - OECD Principle 2



1632.; Gramatica, P., Corradi, M., and Consonni, V. (2000). Modelling and prediction of soil sorption

coefficients of non-ionic organic pesticides by molecular descriptors. Chemosphere 41, 763-777.

[4]AATS1p, Unitless, Average Broto-Moreau autocorrelation - lag 1 / weighted by polarizabilities.

Todeschini, R. and Consonni, V. (2009). Molecular descriptors for chemoinformatics, (Weinheim:

Wiley VCH) pg 27-37

[5]ATSC1i, Unitless, Centered Broto-Moreau autocorrelation - lag 1 / weighted by first ionization

potential. Todeschini, R. and Consonni, V. (2009). Molecular descriptors for chemoinformatics,

(Weinheim: Wiley VCH) pg 27-37

[6]ETA_EtaP, Unitless, Composite index Eta relative to molecular size. Roy K & Ghosh G, QSTR

with Extended Topochemical Atom Indices. 2. Fish Toxicity of Substituted Benzenes. J. Chem. Inf.

Comput. Sci., 44, 2004, 559-567. http://dx.doi.org/10.1021/ci0342066; Roy K, Das R N, On some

novel extended topochemical atom (ETA) parameters for effective encoding of chemical information

and modeling of fundamental physicochemical properties. SAR QSAR Environ Res 22, 2011, 451-

472, http://dx.doi.org/10.1080/1062936X.2011.569900

[7]MLFER_S, Unitless, Combined dipolarity/polarizability. Molecular linear free energy relation.

Platts JA, Butina D, Abraham MH, Hersey A. Estimation of molecular free energy relation descriptors

using a group contribution approach. J Chem Inf Comput Sci. 1999;39(5):835-45.

[8]nN, Unitless, Number of nitrogen atoms.

[9]ETA_Beta, Unitless, A measure of electronic features of the molecule. Roy K & Ghosh G, QSTR

with Extended Topochemical Atom Indices. 2. Fish Toxicity of Substituted Benzenes. J. Chem. Inf.

Comput. Sci., 44, 2004, 559-567. http://dx.doi.org/10.1021/ci0342066; Roy K, Das R N, On some

novel extended topochemical atom (ETA) parameters for effective encoding of chemical information

and modeling of fundamental physicochemical properties. SAR QSAR Environ Res 22, 2011, 451-

472, http://dx.doi.org/10.1080/1062936X.2011.569900 

4.4.Descriptor selection:

PaDEL software was used to calculate1440 molecular descriptors.

A first filter was applied in order to remove descriptors with missing

values, constant and near constant (standard deviation of0.25 as a

     threshold) and highly correlated descriptors (96% as a threshold).

The remaining766 descriptorswere used in a feature selection

procedure to select a minimum number of variables encoding the most

relevant structural information to the modelled endpoint. This step

consisted of coupling Genetic Algorithms (GA) with the weighted kNN

algorithm and was applied in 5-fold cross-validation on the training set

(10531 chemicals). This procedure was run for 200 consecutive

independent runs maximizing Q2in cross-validation and

minimizing the number of descriptors. The number of k neighbors is

optimized within the range of 3 to 7. The descriptors were then ranked

based on their frequency of selection during the GA runs. The best model

showed an optimal compromise between the simplicity (minimum number of

descriptors) and performance (Q2in cross-validation) to

ensure transparency and facilitate the mechanistic interpretation as

required by OECD principles 2 and 5. More details in paper[ref2

     Section 2.7].

4.5.Algorithm and descriptor generation:



PaDEL descriptors were calculated based on two-dimensional (2D) chemical

structures generated by the Indigo cheminformatics suite of tools

implemented in KNIME. 2D descriptors were selected over 3D to avoid

complicated and usually irreproducible geometrical optimizations. The

calculated descriptors fall into different groups such as constitutional

indices, ring descriptors, topological indices, 2D matrix based

descriptors, functional group counts and atom counts. Details and

references provided inSection 4.3.

4.6.Software name and version for descriptor generation:

PaDEL-Descriptors V2.21

An open source software to calculate molecular descriptors and fingerprints.

Chun Wei Yap (phayapc@nus.edu.sg)

http://padel.nus.edu.sg/software/padeldescriptor

4.7.Chemicals/Descriptors ratio:

10531chemicals (trainingset)/9descriptors=1170.11

 

5.1.Description of the applicability domain of the model:

The model is applicable to heterogeneous organic chemicals. In the 

implementation of the model several pieces of information are given to 

help the user in evaluating the reliability of a prediction. The

chemical structure is first assessed to see if it is falling within the 

Applicability Domain of the model or not. Then the accuracy of the

predicted value is reported based on the similarity of the query

chemical to its neighboring chemicals in the training set of the model. 

This fullfills the requirements of the 3rd OECD principle by defining

     the limitations in terms of the types of chemical structures,

     physicochemical properties and mechanisms of action for which the model

     can generate reliable predictions.

5.2.Method used to assess the applicability domain:

The applicability domain of the model is assessed in two independent

levels using two different distance-based methods. First, a global

applicability domain is determined by means of the leverage approach

that checks whether the query structure falls within the

multidimensional chemical space of the whole training set. 

The leverage of a query chemical is proportional to its Mahalanobis

distance measure from the centroid of the training set. The leverages of

a given dataset are obtained from the diagonal values of the hat matrix.

This approach is associated with a threshold leverage that corresponds

to3*p/nwhere p is the number of model variables while n is the

number of training compounds. A query chemical with leverage higher than

the threshold is considered outside the AD and can be associated with

unreliable prediction. 

The leverage approach has its limitations, especially when it comes to

gaps within the descriptor space of the model or at the edges of the

training set. That's why we added a second layer of applicability domain

5.Defining the applicability domain - OECD Principle 3



assessement with a local approach investigating only the vicinity of the

query chemical. Contrary to the first approach that provides only

Boolean answers (yes/no), this local approach provides a continuous

index ranging from 0 to 1. This local AD-index is relative to the

similarity of the query chemical to its 5 nearest neighbors in the p

dimensional space of the model. The higher this index, the more the

prediction is likely to be reliable.

5.3.Software name and version for applicability domain assessment:

Implemented in NCCT_Models Suite V1.02

An implementation of a local similarity index and the leverage approach based on the work of

Sahigara, F.; Mansouri, K.; Ballabio, D.; Mauri, A.; Consonni, V.; Todeschini, R. Comparison of

Different Approaches to Define the Applicability Domain of QSAR Models. Molecules 2012, 17,

4791-4810.

Kamel Mansouri (mansouri.kamel@epa.gov; mansourikamel@gmail.com);

https://comptox.epa.gov/dashboard/

5.4.Limits of applicability:

These two AD methods described inSection 5.2are complementary and can be interpreted in the

following way: 

- If a chemical is considered outside the global AD with a low local

AD-index, the prediction is more likely to be unreliable 

- If a chemical is considered outside the global AD but the local

AD-index is average or relatively high, this means the query chemical is

on the edge of the training set but has quite similar neighbors. The

prediction can be considered with caution. 

- If a chemical is considered inside the global AD but the local

AD-index is average or relatively low, this means the query chemical

fell in a "gap" of the chemical space of the model but still within the

boudaries of the training set and surrounded with training chemicals.

The prediction should be considered with caution. 

- If a chemical is considered inside the global AD with a high local

AD-index, the prediction can be trusted. 

Even though the applicability domain is necessary to set the limits of

the interpolation space of the model, it doesn't necessarily inform

about the quality of the prediction especially in the empty spaces and

around the edges of the descriptor space. In order to overcome this

limitation and help the user decide about the reliability of a

prediction, we added a confidence level index raging from 0 to 1

relative to the accuracy of prediction of the 5 nearest neighbors to the

query chemical. The higher this index, the more the prediction is likely

to be reliable.

 

6.1.Availability of the training set:

Yes

6.2.Available information for the training set:

6.Internal validation - OECD Principle 4



Internal ID; CAS checksum; name validity; preferred name; IUPAC name; Original SMILES; QSAR-

ready canonical smiles; InChI; Salt information; DSSTox GSID; Experimental reference; Consistency

flag

CAS RN: Yes

Chemical Name: Yes

Smiles: Yes

Formula: No

INChI: Yes

MOL file: Yes

6.3.Data for each descriptor variable for the training set:

All

6.4.Data for the dependent variable for the training set:

All

6.5.Other information about the training set:

The training set consists of10531 chemicals. The structures are

randomly selected to represent 75% of the available data keeping a

similar normal distrubution of LogP vlaues in both training and test

sets using the Venetian blinds method. The values are ranging from -5 to

11. A plot of the distribution of LogP values is provided in the

supporting informationSection 9.3.

6.6.Pre-processing of data before modelling:

No preprocessing of the values.

6.7.Statistics for goodness-of-fit:

Performance in training: 

R2=0.86 

RMSE=0.67

6.8.Robustness - Statistics obtained by leave-one-out cross-validation:

6.9.Robustness - Statistics obtained by leave-many-out cross-validation:

Performance in 5-fold cross-validation: 

Q2=0.85 

RMSE=0.69 

A plot of the experimental versus predicted values for the training set

is provided in supporting informationSection 9.3.

6.10.Robustness - Statistics obtained by Y-scrambling:

6.11.Robustness - Statistics obtained by bootstrap:

6.12.Robustness - Statistics obtained by other methods:
 

7.1.Availability of the external validation set:

Yes

7.2.Available information for the external validation set:

Internal ID; CAS checksum; name validity; preferred name; IUPAC name; Original SMILES; QSAR-

ready canonical smiles; InChI; Salt information; DSSTox GSID; Experimental reference; Consistency

flag

CAS RN: Yes

Chemical Name: Yes

7.External validation - OECD Principle 4



Smiles: Yes

Formula: No

INChI: Yes

MOL file: Yes

7.3.Data for each descriptor variable for the external validation set:

All

7.4.Data for the dependent variable for the external validation set:

All

7.5.Other information about the external validation set:

The validation set consists of3510 chemicals. 

The values are ranging from -5 to 11.

7.6.Experimental design of test set:

The structures are randomly selected to represent 25% of the available

data keeping a similar normal distrubution of LogP vlaues in both

training and test sets using the Venetian blinds method. A plot of the

distribution of LogP values is provided in the supporting informationSection

     9.3.

7.7.Predictivity - Statistics obtained by external validation:

Performance in test: 

R2=0.86 

RMSE=0.79

7.8.Predictivity - Assessment of the external validation set:

The validation set consisting of3510 chemicalswhich is

equivalent to a third (1/3) of the training set is sufficient for the

evaluation of the predictivity of the model and a good representation of

the chemical space as shown in the multi-dimensional scaling plot

provided in supporting informationSection 9.3.

A plot of the experimental versus predicted values for the validation

set is provided in supporting informationSection

     9.3.

7.9.Comments on the external validation of the model:

The choice of proportions between the training set and the validation

set as well as the splitting method helped in accurately evaluating the

model and covering most of the training set chemical space. This goal

was accomplished without the need to do a structural sampling that

usually shows over-optimistic evaluation of the predictivity or a

complete random selection that risks to bias the evaluation towards a

certain region of the chemical space.

 

8.1.Mechanistic basis of the model:

The model descriptors were selected statistically but they can also be

mechanistically interpreted. 

1) CrippenLogP: This is a list of atom-type based

     fragments weighted for their contribution to the distribution of the

     solute between the water and octanol phases. It is designed such that

8.Providing a mechanistic interpretation - OECD Principle 5



     each atom present in the molecule will match one and only one atom type

     using SMARTS notaions [ref 1 Section 4.3].  

2) GATS2c: Geary autocorrelation - lag 2 / weighted

     by charges. It is known since the early works of Rogers and Cammarata

     (1969) that solvation by the aqueous phase is charge-controlled, thus

     the direct link of this charge weighted descriptor to LogP [ref

     1 Section 9.3].  

3) LipoaffinityIndex: One of the atom type

     electrotopological state indices. It is calculated based on the number

     of lipophilic groups in the molecule that directly contribute to its

     solvation in the octanol phase.  

4) AATS1p: This is the average Broto-Moreau

     autocorrelation - lag 1 / weighted by polarizabilities. It is well

     established that solvation in the octanol phase is polarizability

     controlled [ref 2 Section 9.3]. Rogers and

     Cammarata in 1969 developed an equation to predict LogP based only on

     charge density and induced polarization as descriptors [ref

     1 Section 9.3]. 5) ATSC1i: Centered Broto-Moreau autocorrelation - lag

   1 / weighted by first ionization potential. Ionization state is one of the

   key physicochemical properties associated hydrophobicity and lipophilicity [ref

   3 Section 9.3]. Partitioning of a compound between aqueous and

   lipid (organic) phases is an equilibrium process. Under normal conditions,

   when the chemical compound is partly ionized, it is assumed that only the

   unionized form can be found in the organic phase [ref

   4 Section 9.3]. 6) ETA_EtaP: Composite index Extended

   Topochemical Atom (ETA) relative to molecular size. The importance

of molecular size for log P prediction was demonstrated by Bodor and

Buchwald (1997)[ref 5 Section 9.3].

It determines the energy that is required by the solute to create a cavity

in the solvent and was used in several models including ABSOLV and SLIPPER[ref 6 Section 9.3].

7) MLFER_S:

Combined dipolarity/polarizability, molecular linear free energy relation.

In 1978, Dunn and Wold suggested that the ratio or partioning between

lipophilic and hydrophilic surfaces in general depends on two main

factors, one being the molar volume effect and the other is possibly due

to solute/solvent dipolar interactions[ref 7

   Section 9.3]. About a decade later, Schuurmann suggested that the

electronic factors involved in octanol-water partition include general

polarity and polarizability interactions in addition to hydrogen bonds,

and specific donor-acceptor interactions between solute and solvent[ref

   8 Section 9.3]. In their LSER equation, Kamlet et al., used solutes

dipolarity/polarizability as one of the main parameters to predict LogP[Ref

   9 Section 9.3].8) nN: Number of nitrogen atoms. This

is an important parameter since nitrogen atoms are hydrogen bond acceptors

which was demonstrated to highly influence solutes pationing between

octanol and water phases since the early works of Hansch in the sixties of



the last century[Ref 10 Section 9.3]. In

1976, Holmes and Lough proved the effect of intermolecular hydrogen

bonding upon partition coefficients in different hydrocarbon-water systems

using conjugative effects, and steric effects, developed for calculating

long-wavelength U.V. absorption maxima of the conjugated heteroenoid

compounds[Ref 11 Section 9.3].9)

   ETA_Beta: A measure of electronic features of the molecule.Extended

   topochemical atom ETA indices are a relatively new class of topological

   descriptors that contain important information regarding the nature of the

   atoms, bonds, atomic electronic environment and consider the contribution

   of different functional groups, molecular fragments, and branching that

   are all contributors, as discussed earlier, to the lipophilic/hydrophilic

partioning[ref 12 Section 9.3].

8.2.A priori or a posteriori mechanistic interpretation:

A posteriori mechanistic interpretation.

8.3.Other information about the mechanistic interpretation:

For more details and full reference, see references inSection

     4.3andSection 9.2.

 

9.1.Comments:

This QSAR model forLogPprediction is part of the NCCT_Models

Suite that is a free and open-source standalone application for the

prediction of physicochemical properties and environmental fate of

chemicals. This application is available in the Supporting informationSection

     9.3of this report and in the paperref 2

     Section 2.7. The detailed results of this suite of models applied

on more than 700k DSSTox chemicals are available on the iCSS chemistry

dashboard (https://comptox.epa.gov/dashboard).

This current version of the model is mainly based on curated and

standardized data collected from the Physprop database. All NCCT_Models

are designed to fulfil the requirement of the 5 OECD principles to

ensure transparency and reproducibility of the results. In order to

predict new chemicals, the models only require 2D chemical structures

that are used to calculate molecular descriptors by PaDEL 2.21 software.

Then a simple weighted kNN algorithm is used to make the prediction

based on the observed values of the k closest molecules. All models

showed high robustness and statistics stability between training, 5-fold

cross-validation and the external validation set. 

Considering the full applicability domain of the14041 chemicals with

available data and the same models parameters described earlier, the

calibration statistics would be anR2 of 0.87 and anRMSE

     of 0.64.
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10.1.QMRF number:

To be entered by JRC

10.2.Publication date:

To be entered by JRC

10.3.Keywords:

To be entered by JRC

10.4.Comments:

To be entered by JRC
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